首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   9946篇
  免费   1244篇
  国内免费   902篇
  2023年   138篇
  2022年   151篇
  2021年   231篇
  2020年   398篇
  2019年   479篇
  2018年   513篇
  2017年   420篇
  2016年   459篇
  2015年   430篇
  2014年   505篇
  2013年   846篇
  2012年   349篇
  2011年   474篇
  2010年   410篇
  2009年   479篇
  2008年   520篇
  2007年   522篇
  2006年   488篇
  2005年   446篇
  2004年   374篇
  2003年   378篇
  2002年   359篇
  2001年   259篇
  2000年   218篇
  1999年   187篇
  1998年   182篇
  1997年   156篇
  1996年   143篇
  1995年   199篇
  1994年   172篇
  1993年   126篇
  1992年   138篇
  1991年   118篇
  1990年   77篇
  1989年   107篇
  1988年   73篇
  1987年   59篇
  1986年   67篇
  1985年   72篇
  1984年   69篇
  1983年   55篇
  1982年   52篇
  1981年   40篇
  1980年   49篇
  1979年   33篇
  1978年   10篇
  1977年   20篇
  1976年   16篇
  1974年   6篇
  1973年   6篇
排序方式: 共有10000条查询结果,搜索用时 17 毫秒
81.
82.
83.
PurposeTo determine the field output correction factors of the radiophotoluminescence glass dosimeter (RPLGD) in parallel and perpendicular orientations with reference to CC01, the ionization chamber.MethodsThe dose to a small water volume and the sensitive volume of the RPLGD and the IBA-CC01 were determined for 6-MV, 100-cm SAD, 10-cm depth using egs_chamber user-code. The RPLGD in perpendicular and parallel orientations to the beam axis were studied. The field output correction factors of each detector for 0.5 × 0.5 to 10 × 10 cm2 field sizes were determined. These field output correction factors were validated by comparing field output factors against data determined from IAEA-AAPM TRS-483 code of practice.ResultsThe field output correction factors of all detectors were within 5% for field sizes down to 0.8 × 0.8 cm2. For 0.5 × 0.5 cm2, the field output correction factors of CC01, RPLGD in perpendicular and parallel orientations differed from unity by 14%, 19%, and 5%, respectively. The percentage difference between field output factors determined using RPLGD and CC01 data, corrected using the field output correction factors determined in this work and measurements with CC01 data corrected using TRS-483, was less than 3% for all field sizes, except for the smallest field size of RPLGD in perpendicular orientation and the CC01.ConclusionsThe field output correction factors of RPLGD and CC01 are reported. The validation proves that RPLGD in parallel orientation combined with the field output correction factors is the most suitable for determining the field output factors for the smallest field used in this study.  相似文献   
84.
The ribosomal stalk protein plays a crucial role in functional interactions with translational GTPase factors. It has been shown that the archaeal stalk aP1 binds to both GDP- and GTP-bound conformations of aEF1A through its C-terminal region in two different modes. To obtain an insight into how the aP1•aEF1A binding mode changes during the process of nucleotide exchange from GDP to GTP on aEF1A, we have analyzed structural changes in aEF1A upon binding of the nucleotide exchange factor aEF1B. The isolated archaeal aEF1B has nucleotide exchange ability in the presence of aa-tRNA but not deacylated tRNA, and increases activity of polyphenylalanine synthesis 4-fold. The aEF1B mutation, R90A, results in loss of its original nucleotide exchange activity but retains a remarkable ability to enhance polyphenylalanine synthesis. These results suggest an additional functional role for aEF1B other than in nucleotide exchange. The crystal structure of the aEF1A•aEF1B complex, resolved at 2.0 Å resolution, shows marked rotational movement of domain 1 of aEF1A compared to the structure of aEF1A•GDP•aP1, and this conformational change results in disruption of the original aP1 binding site between domains 1 and 3 of aEF1A. The loss of aP1 binding to the aEF1A•aEF1B complex was confirmed by native gel analysis. The results suggest that aEF1B plays a role in switching off the interaction between aP1 and aEF1A•GDP, as well as in nucleotide exchange, and promote translation elongation.  相似文献   
85.
86.
87.
Alterations in DNA methylation have been proposed to create a field cancerization state in the colon, where molecular alterations that predispose cells to transformation occur in histologically normal tissue. However, our understanding of the role of DNA methylation in field cancerization is limited by an incomplete characterization of the methylation state of the normal colon. In order to determine the colon’s normal methylation state, we extracted DNA from normal colon biopsies from the rectum, sigmoid, transverse, and ascending colon and assessed the methylation status of the DNA by pyrosequencing candidate loci as well as with HumanMethylation450 arrays. We found that methylation levels of repetitive elements LINE-1 and SAT-α showed minimal variability throughout the colon in contrast to other loci. Promoter methylation of EVL was highest in the rectum and progressively lower in the proximal segments, whereas ESR1 methylation was higher in older individuals. Genome-wide methylation analysis of normal DNA revealed 8388, 82, and 93 differentially methylated loci that distinguished right from left colon, males from females, and older vs. younger individuals, respectively. Although variability in methylation between biopsies and among different colon segments was minimal for repetitive elements, analyses of specific cancer-related genes as well as a genome-wide methylation analysis demonstrated differential methylation based on colon location, individual age, and gender. These studies advance our knowledge regarding the variation of DNA methylation in the normal colon, a prerequisite for future studies aimed at understanding methylation differences indicative of a colon field effect.  相似文献   
88.
89.
Intrinsically disordered domains represent attractive therapeutic targets because they play key roles in cancer, as well as in neurodegenerative and infectious diseases. They are, however, considered undruggable because they do not form stable binding pockets for small molecules and, therefore, have not been prioritized in drug discovery. Under physiological solution conditions many biomedically relevant intrinsically disordered proteins undergo phase separation processes leading to the formation of mesoscopic highly dynamic assemblies, generally known as biomolecular condensates that define environments that can be quite different from the solutions surrounding them. In what follows, we review key recent findings in this area and show how biomolecular condensation can offer opportunities for modulating the activities of intrinsically disordered targets.  相似文献   
90.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号